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Abstract

R has many capabilities most of which are hidden, yet waiting to be discovered. For this reason we
demonstrate some of them and provide tips for how to write faster codes without having to program
in C++, yet using it implicitly.
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1 Introduction

We will show a few tips for faster computations. In small sample and or low dimensions you may
see small differences, but in bigger datasets the differences arise. You might observe a time difference
of only 5 seconds in the whole process. Differences from 40 down to 12 seconds for example, or to 22
seconds; still good. But not always this kind of differences. Some times, one tip gives you 1 second
and then another tip 1 second and so on until you save 5 seconds. If you have 1000 simulations,
then you save 5000 seconds. Even small decreases matter. Some times the speed-ups will appear in
the large scale vectors, but not in the small samples. Perhaps for someone who needs a simple car,
a very expensive car or a jeep type might not be of such use, especially if he or she does not go to
the village or to off-road situation. But for the user who needs a jeep, every computational power,
every second he/she can gain matters. The computer looks strong but bear in mind we are mostly
interested in the relevant durations (which function is faster and by how much) and not the actual
time per se. All the computations took place in a 64-bit desktop with an Intel Core i5-4960K CPU @
3.5GHz processor and 32 GB RAM. This will be just another medium computer in a few years, given
the technological rate of increase.

1.1 Duration of a processes

If you want to see how much time your process or computation or simulation needs, you can do the
following in R

ti <- proc.time()

## put your function here

ti <- proc.time() - ti

## ti gives you 3 numbers (all in seconds) like the ones below

user system elapsed

0.18 0.07 3.35
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The elapsed is what you want. Alternatively you can download the package microbenchmark (Mers-
mann, 2015) which allows you to compare two or more functions measuring the time even in nano-
seconds.

2 A few tips for faster implementations

2.1 Simple functions

The function mean is slower than sum(x)/length(x). If you type sum you will see it is a .Primitive func-
tion, whereas crossprod and colMeans are both .Internal ones and note that colMeans and colSums are
two really really fast function. Our 2 points are a) create your own functions, you will be surprised
to see that you may do faster than R’s built-in functions (it doesn’t always work that way) and b) use
.Internal functions whenever possible. An example of the point is the var function. Create your own
and you will see it is faster.

Search for functions that take less time. For example, the command lm.fit(x,y) is a wrapper for
lm(y x), which means that the first one is used by the second one to give you the nice output. But, if
you need only the coefficients, for example, then use the first one. The syntax is a bit different, the x
must be the design matrix, but the speed is very different especially in the big cases.

Avoid using apply or aggregate we saw before whenever possible if possible. But, use colMeans
or colSums instead of apply(x, 2, mean) to get the mean vector of a sample because it’s faster. For
the median though, you have to use apply(x, 2, median) instead of a for going to every column of the
matrix. The for function is not slower, but the apply is knitter. However, we will get back to the
median case in the end of this document.

Avoid unnecessary calculations. In a discriminant analysis setting for example there is no need
to calculate constant parts, such as log (2π), every time for each group and every iteration. This only
adds time and takes memory and does not affect the algorithm or the result.

Remove unnecessary parentheses as they make it harder for the compiler behind to check whether
the parentheses open and close. Try to make the mathematics simple.

If you want to extract the number of rows or columns of a matrix x do not use nrow(x) or ncol(x),
but dim(x)[1] or dim(x)[2] as they are almost 2 times faster.

If you have a vector ”x” and want to put it in a matrix with say 10 columns, do not write
as.matrix(x, ncol = 10), but matrix(x, ncol = 10). The first method creates a matrix and puts the vector
in. The second method, simply changes the dimension of x, instead of 1 column, it will now have 10.
Again, about 2 times faster.

Instead of log( det(A) ), you can type determinant(A, logarithm = TRUE) as it is slightly faster for
small matrices. In the big matrices, say 100 and above the differences become negligible though.

When it comes to calculating probabilities or p-values more specifically, do not do 1− pchisq(stat, do f ),
but do pchisq(stat, do f , lower.tail = FALSE) as is a bit faster. In the tens of thousands of repetitions
(simulation studies for example or an algorithm that requires p-values repeatedly), the differences
become seconds.

If you take your input matrix and transpose it and never use the initial matrix in the subsequent
steps it is best to delete the initial matrix, or even better store its transpose in the same object. That
is, if you have a matrix x, you should do the following
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y <- t(x) ## wrong

x <- t(x) ## correct

We repeat that this in the case when x is not used again in latter steps. The reason for this is memory
handling. If x is a big and you have a second object as big as the first one, you request your computer
to use extra memory for nothing. If you have a few kilos to carry and want to change the bag, you
just change the bag, you do not get another bag, put the same weight there and carry two bags. Even
if you have a car, it is not wise to do so, especially if the weight is many tens of kilos.

When calculating operations such as sum(a * x), where x is a vector and a is a scalar, a number, do
a * sum(x). In the first case, the scalar is multiplied with all elements of the vector (many multiplica-
tions), whereas in the second case, the sum is calculated first and then a multiplication between two
numbers take place.

Suppose for example you want to calculate the factorial of some integers and most (or all) of
those integers appear more than once (Poisson, beta binomial, beta geometric, negative binomial
distribution for example). Instead of doing the operation for each element, do it for the unique ones
and simply calculate its result by its frequency. See the example below. Note however, that this trick
does not always work. It will work in the case where you have many integers and a for or a while
loop and hence you have to calculate factorials all the time.

x <- rpois(10000, 5)

sum( lgamma(x + 1) )

y <- sort( unique(x) )

ny <- as.vector( table(x) )

sum( lgamma(y + 1) * ny )

Use the command prcomp instead of princomp. The first one should be used for principal compon-
ent analysis when you have matrices with more than 100 variables. The more variables the bigger
(40 times for example) the difference from doing eigen(cov(x)).

Pre-calculate any stuff you require inside the loops or will be used more than one time.
If you are to use the glm or lm commands multiple times, then you should do

glm(y ~ x, family = , y = FALSE ,model = FALSE)

lm(y ~ x, y = FALSE ,model = FALSE)

The two extra arguments y = FALSE ,model = FALSE reduce the memory requirements of the glm
object. We found this tip in the win-vector blog.

When calculating log (1 + x) use log1p(x) and not log(1+x) as the first one is faster. A very nice
function is tabulate.

table(iris[, 5])

tabulate(iris[, 5])

Two differences between these two are that table gives you a name with the values, but tabulate gives
your only the frequencies. Hence, tabulate(x) = as.vector(table(x)). In addition, if you use tabulate, you
can do so with factor variables as well. But, if you have numbers, a numerical vector, make sure the
numbers are consecutive, and strictly positive, i.e. no zero is included.
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x <- rep(0:5, each = 4)

table(x)

tabulate(x) ## 0 is missing

x <- rep(c(1, 3, 4), each = 5)

table(x)

tabulate(x) ## there is a 0 appearing indicating the absence of 2

tabulate is definitely many times faster than table. For discrimination algorithms, tabulate might be
more useful, because of speed, when counting frequencies, it could be more useful as well, as it will
return a 0 value if a number has a zero frequency. The drawback arises when you have negative
numerical data, data with a zero or positive numbers but not consecutive. If you want speed, for-
mulate your data to match the requirements of tabulate. Avoid parentheses. See the examples below
and redo them to convince yourselves.

Unit : nanoseconds
expr min lq mean median uq max neval c ld

a1 587 880 .0 2478 .23 1173 1466 .0 19648 100 a
a2 12024 13489 .5 16246 .23 14076 19941 .0 29031 100 b
a3 24633 26979 .0 32404 .20 31378 34750 .5 59530 100 c

microbenchmark( a1 = for (i in 1:100) 5, a2 = for (i in 1:100) (( 5 )),

a3 = for (i in 1:100) (((( 5 )))) )

a1 is with no parentheses, a2 is with 2 parentheses and a3 is with 4 parentheses.

Unit : nanoseconds
expr min lq mean median uq max neval c ld

a1 587 880 .0 2478 .23 1173 1466 .0 19648 100 a
a2 12024 13489 .5 16246 .23 14076 19941 .0 29031 100 b
a3 24633 26979 .0 32404 .20 31378 34750 .5 59530 100 c

2.2 Using colMeans and colSums

Next, suppose you want to center some data, you can try with apply for example

data = matrix(rnorm(1000 * 10), ncol = 10 )

m <- colMeans(data)

n <- nrow(data) ; p <- ncol(data)

cent <- function(x) x - mean(x)

a1 <- apply(data, 2, cent)

or using this
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a2 <- scale(data, center = TRUE, scale = FALSE)

a3 <- sweep(data, 2L, m)

a4 <- t( t(data) - m )

a5 <- data - rep( m, rep(n, p) ) ## looks faster

See also Gaston Sanchez’s webpage for a comparison of these. We created this example to see for
ourselves.

Unit : microseconds
expr min lq mean median uq max neval

a1 204 .981 278 .7335 329 .02278 339 .8760 372 .5730 588 .551 100
a2 100 .585 130 .9360 153 .60703 152 .6365 172 .8705 276 .241 100
a3 81 .817 114 .2205 131 .29665 128 .0035 142 .5195 446 .912 100
a4 42 .228 57 .3310 82 .81961 81 .6700 96 .3325 392 .368 100
a5 14 .076 20 .0880 36 .17844 29 .3255 39 .5890 425 .798 100

Try the same experiment with a few thousands of columns and just a few rows. You will be
surprised by the number of times the third way is faster than the fourth way.

If you want to extract the mean vector of each group you can use a loop (for function) or

a1 = aggregate(x, by = list(ina), mean)

where ina is a numerical variable indicating the group. A faster alternative is the built-in command
rowsum

a2 <- rowsum(x, ina) / as.vector( table(ina) )

a3 <- rowsum(x, ina, reorder = FALSE) / as.vector( table(ina) ) ## faster

We found this suggestion here suggested by Gabor Grothendieck. Using the same dataset as
before we created the vector ina which contains 5 different distinct values, each appearing 200 times.

Unit : microseconds
expr min lq mean median uq max neval

a1 2538 .657 2683 .8150 2904 .0747 2748 .6235 2959 .030 5815 .715 100
a2 434 .595 481 .2215 529 .1915 495 .4445 523 .156 2073 .564 100

For the covariances the command by could be used but the matrices are stored in a list and
then you need simplify2array to convert the list to an array in order to calculate for example the
determinant of each matrix. The for loop is faster, at least that’s what we have seen in our trials.

What if you have an array with matrices and want to calculate the sum or the mean of all the
matrices? The obvious answer is to use apply(x, 1:2, mean). R works in a column-wise fashion and
not in a row-wise fashion. Instead of the apply you can try t( colSums( aperm(x) ) ) and t( colMeans(
aperm(x) ) ) for the sum and mean operations respectively.
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x <- array( dim = c(1000,10,10) )

for (i in 1:10) x[, , i] = matrix( rnorm(1000* 10), ncol = 10 )

a1 <- apply(x, 1:2, mean)

a2 <- t( colMeans( aperm(x) ) )

Unit : microseconds
expr min lq mean median uq max neval

a1 35173 .46 39991 .249 44639 .0034 44563 .589 47045 .502 77162 .324 100
a2 728 .43 883 .853 988 .6688 928 .573 1062 .588 1440 .146 100

2.3 Calculations involving matrices

If you want the matrix of distances, with the zeros in the diagonal and the upper triangular do
not use the command as.matrix(dist(x)) but use dist(x, diag = TRUE, upper = TRUE). Suppose you
want the Euclidean distance of a single vector from many others (say thousands for example). The
inefficient way is to calculate the distance matrix of all points and take the row which corresponds
to your vector. The efficient way is to use the Mahalanobis distance with the identity matrix and the
covariance matrix.

x <- MASS::mvrnorm(1, numeric(50), diag( rexp(50,0.4)) ) ## vector in $R^50$.

y <- MASS::mvrnorm(1000, numeric(50), diag( rexp(50,0.4)) ) ## vector in $R^50$.

a1 <- dist( rbind(x, y) ) ## inefficient way

Ip <- diag(50)

a2 <- mahalanobis( y, center = x, cov = Ip, inverted = TRUE ) ## better way

Unit : m i l l i s e c o n d s
expr min lq mean median uq max neval

a1 99 .94572 105 .60132 110 .94383 108 .68982 112 .31262 147 .5095 100
a2 2 .14336 2 .42312 3 .04217 2 .60904 3 .14480 29 .0234 100

Can we make the above faster? The answer is yes, by avoiding the matrix multiplications. You see
the matrix multiplications are performed in C++ using a for loop. Even though it’s fast, FORTRAN
can make it faster.

z <- y - x

a <- sqrt( colSums(z^2) )

Try both ways and see. Check the spatial median Section here where we have kept two functions,
one with the Mahalanobis and one with the above trick. Put large data and check the time required
by either function; you will be amazed.

We found this article (pages 18-20) by Douglas Bates very useful and in fact we have taken some
tips from there.
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Suppose X and m are a matrix and a vector and want to multiply them. There are two ways to
do it.

sum(x %*% m) ## a bit faster

sum(m * x)

Suppose you want to calculate the product of an n × p matrix XTX for example. The command
crossprod(X) will do the job faster than if you do the matrix multiplication.

When working with arrays it is more efficient to have them transposed. For example, if you
have K covariance matrices of dimension p × p, you would create an array of dimensions c(p, p, K).
Make its dimensions c(K, p, p). If you want for example to divide each matrix with a different scalar
(number) in the first case you will have to use a for loop, whereas in the transposed case you just
divide the array by the vector of the numbers you have.

solve(X) %*% Y #### classical

solve(X, Y) #### much more efficient because it does not invert the matrix X

t(X) %*% Y #### classical

crossprod(X, Y) ### more efficient

X %*% t(Y) #### classical

tcrossprod(X, Y) #### more efficient

t(X) %*% X #### classical

crossprod(X) #### more efficient

Douglas Bates mentions, in the same article, that calculating XTY in R as t(X)% ∗ %Y instead of
crossprod(X,Y) causes X to be transposed twice; once in the calculation of t(X) and a second time
in the inner loop of the matrix product. The crossprod function does not do any transposition of
matrices. Let us see a comparison now.

x = matrix( rnorm(100 * 10), ncol = 10 )

a1 = t(x) %*% x

a2 = crossprod(x)

Unit : microseconds
expr min lq mean median uq max neval

a1 10 .850 11 .290 14 .13776 11 .730 14 .9555 62 .462 100
a2 4 .105 4 .399 5 .40775 4 .692 5 .1320 17 .009 100

Sticking with solve(X), if you want to only invert a matrix then you should use chol2inv( chol( X )
) as it is faster.

x = matrix( rnorm(100 * 10), ncol = 10 )

s = cov(x)

a1 = solve(s)

a2 = chol2inv( chol( s ) )
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Unit : microseconds
expr min lq mean median uq max neval

a1 14 .370 15 .249 17 .22281 15 .835 16 .4220 112 .608 100
a2 6 .451 7 .331 8 .57772 7 .625 8 .0645 66 .861 100

The trace of the square of a matrix tr
(
A2) can be evaluated either via

sum( diag( crossprod(A) ) )

or faster via

sum(A * A) ## or

sum(A^2)

Let us now calculate times. The second way is faster, simply because the elements of the matrix
are square and then are summed. In the first way, two identical matrices are required and multiplied
and then sum over the elements of the new matrix.

x = matrix( rnorm(100 * 100), ncol = 100 )

a1 = sum( diag( crossprod(x) ) )

a3 = sum(x^2) ## fastest

a3 = sum(x * x)

Unit : microseconds
expr min lq mean median uq max neval

a1 378 .292 400 .8720 423 .22317 413 .481 426 .6775 1277 .393 100
a2 15 .249 17 .8885 21 .61856 19 .648 22 .5805 43 .987 100
a3 15 .836 18 .1815 32 .79716 20 .235 27 .1255 899 .688 100

If you want to calculate the following trace involving a matrix multiplication tr
(
XTY

)
you can

do either

sum( diag( crossprod(X, Y) ) ) ## just like before

or faster

sum(X * Y) ## faster, like before

Moving in the same spirit, suppose you want the diagonal of the crossproduct of two matrices,
then do

diag( tcrossprod(X, Y) ) ## for example

rowSums(X * Y) ## this is faster

Suppose you have two matrices A, B and a vector x and want to find ABx (the dimensions must
match of course).
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A %*% B %*% x ## inefficient way

A %*% (B %*% x) ## efficient way

The explanation for this one is that in the first case you have a matrix by matrix by vector cal-
culations. In the second case you have a matrix by vector which is a vector and then a matrix by a
vector. You do less calculations. The final tip is to avoid unnecessary and/or extra calculations and
try to avoid doing calculations more than once.

As for the eigen-value decomposition, there are two ways to do the multiplication

s = matrix( rnorm(100 * 100), ncol = 100 )

s = crossprod(s)

eig = eigen(s)

vec = eig$vectors

lam= eig$values

a1 = vec %*% diag(lam) %*%t(vec)

a2 = vec %*% ( t(vec) * lam ) ## faster way

Unit : microseconds
expr min lq mean median uq max neval

a1 1315 .222 1340 .148 1409 .3404 1358 .6230 1388 .3875 2359 .775 100
a2 671 .247 684 .443 744 .2076 695 .0005 712 .3015 1674 .746 100

The exponential term in the multivariate normal can be either calculated using matrices or simply
with the command mahalanobis. If you have many observations and many dimensions and or many
groups, this can save you a looot of time (we have seen this).

x <- matrix( rnorm(1000 * 20), ncol = 20 )

m <- colMeans(x)

n <- nrow(x)

p <- ncol(x)

s <- cov(x)

a1 = diag( (x - rep(m, rep(n, p)) ) %*% solve(s) %*% t(x - rep(m, rep(n, p)) ) )

a2 = diag( t( t(x)- m ) %*% solve(s) %*% t(x)- m )

a3 = mahalanobis(x, m, s) ## much faster

Unit : microseconds
expr min lq mean median uq max neval

a1 12566 .307 13131 .399 14383 .944 13564 .821 13777 .133 37264 .327 100
a2 14018 .770 14839 .574 16883 .285 15192 .499 15802 .164 40466 .607 100
a3 529 .021 630 .633 671 .828 649 .547 692 .801 1334 .283 100
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2.4 Numerical optimisation

The nlm is much faster than optim for optimization purposes but optim is more reliable and robust.
Try in your examples or cases, if they give the same results and choose. Or use first nlm followed by
optim.

If you have a function for which some parameters have to be positive, do not use constrained
optimization, but instead put an exponential inside the function. The parameter can take any values
in the whole of R but inside the function its exponentiated form is used. In the end, simply take the
exponential of the returned value. As for its variance use the ∆ method (Casella and Berger, 2002).
If you did not understand this check the MLE of the inverted Dirichlet distribution and the Dirichlet
regression (φ parameter) here.

Speaking of Dirichlet distribution, there are two ways to estimate the parameters of this distribu-
tions. Either with the use nlm or via the Newton-Raphson algorithm. We did some simulations and
saw the Newton-Raphson can be at least 10 times faster. The same is true for the circular regression
(Presnell et al., 1998) when comparing nlm with the E-M algorithm as described by Presnell et al.
(1998). Switching to E-M or the Newton-Raphson and not relying on the nlm command can save
you a looot of time. If you want to write a code and you have the description of the E-M or the
Newton-Raphson algorithm available, because somebody did it in a paper for example, or you can
derive it yourself, then do it.

If you have an iterative algorithm, such as Newton-Raphson, E-M or fixed points and you stop
when the vector of parameters does not change any further, do not use rbind, cbind or c(). Store only
two values, vec.old and vec.new. What we mean is, do not do for example

u[i, ] <- u[i - 1, ] + W%*%B ## not efficient

u.new <- u.old + W%*%B ## efficient

So, every time keep two vectors only, not the whole sequence of vectors. The same is true for
the log-likelihood or whatever you have. Unless you want a trace of how things change, then ok,
keep everything. Otherwise, apart from begin faster it also helps the computer run faster since less
memory is used.

2.5 Vectorisation

Vectorization is a big thing. It can save tremendous amount of time even in the small datasets. Try
to avoid for loops by using matrix multiplications. For example, instead of

for (i in 1:n) y[i] <- x[i]^2

you can use

y <- x^2

Of course, this is a very easy example, but you see my point. This one requires a lot of thinking and is
not always applicable. But, if it can be done, things can be super faster. See the bootstrap correlation
coefficient for example, where I have two functions, boot.correl with a for loop and bootcor, which is
vectorised.
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2.6 Parallel computing

Before we begin with the functions, we would like to say a few words about the parallel computing
in R. If you have a machine that has more than 1 cores, then you can put them all to work sim-
ultaneously and speed up the process a lot. If you have tricks to speed up your code that is also
beneficiary. We have started taking into account tricks to speed up my code as I have mentioned
before.

Panagiotis Tzirakis (master student at the department of computer science of the university of
Crete in Herakleion) has showed me how to perform parallel computing in R. He is greatly acknow-
ledged not only by us, but also by the readers of these notes, since they will save time as well.

The idea behind is to use a library that allows parallel computing. Panayiotis suggested me the
doParallel package (which uses the foreach package) and that is what I will use from now on. Below
are some instructions on how to use the package in order to perform parallel computing. In addition,
we have included the parallel computing as an option in some functions and in some others we have
created another function for this purpose. So, if you do not understand the notes below, you can
always see the functions throughout this text.

## requires(doParallel)

Create a set of copies of R running in parallel and communicating

## over sockets.

cl <- makePSOCKcluster(nc) ## nc is the number of cluster you

## want to use

registerDoParallel(cl) ## register the parallel backend with the

## foreach package.

## Now suppose you want to run R simulations, could be

## R=1000 for example

## Divide the number of simulations to smaller equally

## divided chunks.

## Each chunk for a core.

ba <- round( rep(R/nc, nc) )

## Then each core will receive a chunk of simulations

ww <- foreach(j = 1:nc,.combine = rbind) %dopar% {

## see the .combine = rbind. This will put the results in a matrix.

## Every results will be saved in a row.

## So if you have matrices, make them vectors. If you have lists

## you want to return,

## you have to think about it.

a <- test(arguments, R = ba[j], arguments)$results

## Instead of running your function "test" with R simulations

## you run it with R/nc simulations.

## So a stores the result of every chunk of simulations.

return(a)

}

stopCluster(cl) ## stop the cluster of the connections.
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To see your outcome all you have to press is ww and you will see something like this

result.1 .....

result.2 .....

result.3 .....

result.4 .....

So, the object ww contains the results you want to see in a matrix form. If every time you want a
number, the ww will be a matrix with 1 column. We will see more cases later on. Note that f you
choose to use parallel computing for something simple, multicore analysis might take the same or
a bit more time than single core analysis only because it requires a couple of seconds to set up the
cluster of the cores. In addition, you might use 4 cores, yet the time is half than with 1 core. This
could be because not all 4 cores work at 100% of their abilities. Of course you can always experiment
with these things and see.

2.7 Efficiently written functions in R packages

The multinomial regression is offered in the package VGAM (Yee, 2010), but it also offered in the
package nnet (Venables and Ripley, 2002). The implementation in the second package is much faster.
The same is true for the implementation of the ordinal logistic regression in the VGAM and in the
ordinal (Christensen, 2015). The latter package does it much faster. Also, the package fields (Nychka
et al., 2015) has a function called rdist which is faster than the built-in dist in R.

Many fast functions can also be found in the package Rfast (Papadakis et al., 2016). This pack-
age contains many fast or really fast functions, either written in C++ or simply using R functions
exploiting the row/colMeans and row/colSums functions. The function colMedians for example is
much faster than apply(x, 2, median). The same is true for the colVars. Functions for matrices, distribu-
tion fitting, utility functions and many more are there and we keep adding functions. We have also
implemented regression functions as well, which can handle large sample sizes (50,000 or more, for
example) efficiently. Some of the functions are solely in R so you can access them directly, but most
of them are written in C++. The codes are accessible in the source files of the package.
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